THERAPEUTIC DRUG MONITORING OF TACROLIMUS AND MYCOPHENOLIC ACID IN RENAL TRANSPLANT RECIPIENTS USING A VOLUMETRIC DRIED BLOOD SPOT SAMPLING DEVICE

Objectives
- To develop an LC-MS/MS assay to quantify tacrolimus and mycophenolic acid in dried blood spots (DBS)
- To clinically validate the method for tacrolimus and mycophenolic acid therapeutic drug monitoring (TDM) using a volumetric DBS sampling device

Main findings
- DBS sampled abbreviated AUC monitoring of tacrolimus and mycophenolic acid is feasible and comparable to conventional whole blood TDM
- Patient training and guidance on the DBS sampling procedure is essential to ensure clinical feasibility
- Single sample DBS based tacrolimus trough concentration monitoring shows no sufficient accuracy for clinical application yet

Introduction
- Renal transplant recipients require immunosuppression therapy to prevent graft rejection, typically including tacrolimus and mycophenolic acid
- Tacrolimus and mycophenolic acid dosing is individualized through TDM, because of their extensive inter- and intrapatient pharmacokinetic variability
- Conventional TDM, based on EDTA WB samples at the clinic is suboptimal as patients need to visit the clinic
- Home-based, DBS sampled TDM has great potential to replace conventional TDM but still is no common practice

Methods
- Clinical validation was performed by direct comparison of paired DBS and WB concentrations and abbreviated AUCs
- DBS samples were obtained by finger prick and collected through the HemaXis™ DBS device
- Participants were kidney (pancreas) graft recipients >1 year post-transplantation, with an eGFR >25 ml min⁻¹ 1.73 m⁻², on once daily tacrolimus (Advagraf®) and mycophenolic acid mofetil (Cellcept®)
- Each patient provided 4 paired DBS and WB samples, taken pre-dose and 1, 2 and 3 hours post-dose
- Tacrolimus and mycophenolic acid WB and DBS concentrations were determined on two LC-MS/MS systems
- Abbreviated AUCs were calculated in MW/Pharm, using maximum a posteriori Bayesian estimation and limited sampling population models for tacrolimus and mycophenolic acid (C₀, Cᵳ, Cᵱ, Cᵳ
- Method agreement was evaluated with Passing-Bablok regression and Bland-Altman analysis, for individual concentrations and AUCs. Dosing recommendation differences were assessed to investigate clinical impact

Sample characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N</th>
<th>Mean</th>
<th>95%CI</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tacrolimus WB concentration (µg l⁻¹)</td>
<td>200</td>
<td>9.05</td>
<td>8.39–9.71</td>
<td>1.26–22.56</td>
</tr>
<tr>
<td>Tacrolimus DBS concentration (µg l⁻¹)</td>
<td>200</td>
<td>8.35</td>
<td>7.71–9.00</td>
<td>1.15–23.54</td>
</tr>
<tr>
<td>Tacrolimus WB AUC₀₋₂₄ (µg h l⁻¹)</td>
<td>63</td>
<td>165.3</td>
<td>151.0–179.6</td>
<td>44–336</td>
</tr>
<tr>
<td>Tacrolimus DBS AUC₀₋₂₄ (µg h l⁻¹)</td>
<td>63</td>
<td>152.7</td>
<td>139.1–168.3</td>
<td>43–339</td>
</tr>
<tr>
<td>Mycophenolic acid WB concentration (mg l⁻¹)</td>
<td>192</td>
<td>5.47</td>
<td>4.74–6.20</td>
<td>0.38–34.84</td>
</tr>
<tr>
<td>Mycophenolic acid DBS, concentration (mg l⁻¹)</td>
<td>192</td>
<td>5.08</td>
<td>4.40–5.76</td>
<td>0.35–29.47</td>
</tr>
<tr>
<td>Mycophenolic acid WB AUC₀₋₂₄ (mg h l⁻¹)</td>
<td>43</td>
<td>42.8</td>
<td>37.5–48.1</td>
<td>6–90</td>
</tr>
<tr>
<td>Mycophenolic acid DBS, AUC₀₋₂₄ (mg h l⁻¹)</td>
<td>43</td>
<td>41.2</td>
<td>35.9–46.6</td>
<td>5–101</td>
</tr>
</tbody>
</table>

Clinical validation of tacrolimus monitoring

Clinical validation of mycophenolic acid monitoring

References

COI, Funding and Acknowledgements
- The authors have no conflicts of interest to declare
- Part of this study was sponsored by Astellas Pharma B.V.
- We appreciate the assistance of the analytical staff of the Department of Clinical Pharmacy and Toxicology of the LUMC, with special thanks to Trees Hessing, Erik Metscher and Annelies Kruijthof

Contact
Presenter and corresponding author
Dr. D.J.A.R. Moes, PharmD, PhD
Hospital Pharmacist Laboratory (TDM & Toxicology), Pharmacist
Leiden University Medical Center
Department of Clinical Pharmacy & Toxicology
E-mail: D.J.A.R.Moes@lumc.nl