Screening Newborns for Congenital Cytomegalovirus Infection

Jutte J. C. de Vries; Ann C. T. M. Vossen; Aloys C. M. Kroes


http://jama.ama-assn.org/cgi/content/full/304/4/407
Screening Newborns for Congenital Cytomegalovirus Infection

To the Editor: Dr Boppana and colleagues concluded that DBS real-time PCR assays are not suitable for screening newborns for congenital CMV infection due to their insufficient sensitivity. We believe that this is a premature conclusion, based on a number of considerations that were not sufficiently discussed in this article.

First, the sensitivity of DBS testing is highly variable, largely depending on the nucleic acid extraction methodology used, so conclusions cannot be generalized. It appears that this problem can be reduced by using optimized techniques that differ from those applied in the study by Boppana et al. In addition, performing independent triplicate testing to increase sensitivity has been advocated, an approach not used in this study.

Second, it should be clear what the clinical relevance is of the cases that were missed. These cases will likely involve the samples with the lowest or even absent viral loads, and there is evidence that such cases are associated with lower risks of late-onset sequelae, including hearing loss. Sensitivity should be judged by patients in whom hearing loss is eventually caused by CMV. The intended follow-up of the infants with congenital CMV infection in this study will reveal the clinical outcome, and these data should be awaited before discarding the screening test that was used.

Third, we are concerned about the possible inclusion of very common but generally harmless postnatal CMV infections. Oropharyngeal contamination during vaginal delivery might cause positive saliva samples soon after birth, as has been shown for herpes simplex virus. Sampling in this study was mainly performed on the day of birth. Confirmation of the presumed congenital infections was carried out at a mean age of more than 6 weeks, although it is commonly accepted that only CMV infections diagnosed within the first 2 or 3 weeks can be considered proof of congenital CMV infection. If postnatally infected neonates were indeed included, this would falsely suggest a lower sensitivity of DBS testing.

Jutte J. C., de Vries, MD, MSc
jjdevries@lumc.nl
Ann C. T. M. Vossen, MD, PhD
Aloys C. M. Kroes, MD, PhD
Department of Medical Microbiology
Leiden University Medical Center
Leiden, the Netherlands

Financial Disclosures: None reported.


Dried blood spot real-time polymerase chain reaction assays to screen newborns for congenital cytomegalovirus infection. JAMA. 2010;303(14):1375-1382.


it has been documented that children with undetectable viral load at birth can develop CMV-associated hearing loss.4,5

Thus, the relationship between blood viral load and sequelae among infants with congenital CMV infection may not be straightforward.

De Vries et al also raise the possibility that some of the infants in our study may have had postnatally acquired CMV infection. Although this possibility cannot be definitively excluded in some of the infants, we believe that it is unlikely because only 6 of 18 (33%) infants who were confirmed to have congenital CMV infection before 3 weeks of life were DBS-positive, indicating that the sensitivity of our DBS testing was not lowered by postnatally acquired infections.

Suresh B. Boppana, MD
shoppana@peds.uab.edu
Karen B. Fowler, DrPH
Shannon A. Ross, MD, MSPH
Department of Pediatrics
University of Alabama at Birmingham

Financial Disclosures: None reported.

In Reply: Dr de Vries and colleagues and Drs Dollard and Schleiss believe that it is premature to conclude that DBS PCR assays are not suitable for newborn CMV screening. We agree that currently available DNA extraction methods and PCR protocols result in considerable variation in DBS PCR assay performance. To address these issues, we compared 2 different extraction methods and PCR protocols for detecting CMV DNA in DBS. Although changing the extraction method and the PCR protocol did not enhance the DBS PCR performance, we cannot discount that these methods could have missed infants with very low viral loads. However, a recent study found that 6 of 24 (25%) infants with symptomatic congenital CMV infection with significant neurologic involvement were whole blood PCR-negative, suggesting that not all symptomatic congenitally infected neonates have detectable viremia.

The availability of DBS samples for triplicate testing as proposed by de Vries et al may be limited, as well as impractical for a screening procedure. With triplicate testing, the study by de Vries et al could only obtain an optimal sensitivity of 50% for DBS with low CMV DNA loads.3 Because it is not possible to accurately predict which of the infected children will have sequelae, a screening assay with sensitivity between 70% and 80% would likely miss children who will have adverse outcome, making it premature to consider implementing such a test. There is little evidence to suggest that methodological changes could increase the sensitivity of PCR assays to acceptable levels for newborn screening at this time. Although future improvements in DNA extraction methods and PCR assays could be envisioned, for newborn CMV screening methods based on saliva should be explored.

Both letters raise the issue that infected infants negative by DBS PCR might be at lower risk for sequelae from congenital CMV infection. However, support for this idea is based on evaluation of small numbers of selected infants. The absence of prospective data correlating blood viral load and outcome makes it impossible to categorize infected newborns into risk groups by blood PCR results. Additionally, it has been documented that children with undetectable viral loads at birth can develop CMV-associated hearing loss.3,4