Differential distribution of inflammatory cells in large and small airways in smokers

Salvatore Battaglia, Thais Mauad, Annemarie M van Schadewijk, Antonio M Vignola, Klaus F Rabe, Vincenzo Bellia, Peter J Sterk, Pieter S Hiemstra

Background: Smoking induces structural changes in the airways, and is considered a major factor in the development of airflow obstruction in chronic obstructive pulmonary disease. However, differences in inflammatory cell distribution between large airways (LA) and small airways (SA) have not been systematically explored in smokers. Hypothesis: The content of cells infiltrating the airway wall differs between LA and SA.

Aims: To compare the content of neutrophils, macrophages, lymphocytes and mast cells infiltrating LA and SA in smokers who underwent surgery for lung cancer. Methods: Lung tissue from 15 smokers was analysed. Inflammatory cells in the lamina propria were identified by immunohistochemical analysis, quantified by digital image analysis and expressed as number of cells per surface area.

Results: The number of neutrophils infiltrating the lamina propria of SA (median 225.3 cells/mm²) was higher than that in the lamina propria of LA (median 60.2 cells/mm²; p < 0.001). Similar results were observed for mast cells: 313.3 and 133.7 cells/mm² in the SA and LA, respectively (p < 0.001). In contrast, the number of CD4 cells was higher in LA compared with SA (median 217.8 vs 80.5 cells/mm²; p = 0.042).

Conclusions: These findings indicate a non-uniform distribution of neutrophils and mast cells throughout the bronchial tree, and suggest that these cells may be involved in the development of smoking-related peripheral lung injury.

METHODS

Additional details for this section are provided in the online supplement (available online at http://jcp.bmj.com/supplemental).

Subjects and study design

Consecutive patients were selected and prospectively enrolled in this cross-sectional study. Patients were smokers or ex-smokers scheduled for surgical resection for primary lung cancer. Subjects who underwent surgery for other diseases were excluded. Fifteen smokers were recruited (table 1), including seven current smokers and eight ex-smokers, who had stopped smoking at least 6 months before the lung resection. The study was approved by the medical ethics committee of the Leiden University Medical Centre (Leiden, The Netherlands), and informed written consent was obtained for each subject.

HISTOLOGY

Tissue sampling and processing

At least two samples of peripheral parenchyma and one or two samples of central airways free of tumour were obtained. One or two LA and all transversally cut SA, defined by an internal perimeter larger (LA) or smaller (SA) than 6 mm, were selected for each patient. To avoid measurements in tangentially cut airways, airways with a short/long diameter ratio <0.33 were excluded from the study.

Inflammatory cells

Mouse monoclonal antibodies were used for identification of neutrophils, macrophages, CD4 cells, CD8 cells and mast cells.

Abbreviations: COPD, chronic obstructive pulmonary disease; LA, large airways; SA, small airways
A polyclonal antibody was used for the identification of total CD3 T lymphocytes.

Morphometric analyses
Cases were coded and measurements were carried out without knowledge of the clinical data. Lamina propria (or inner wall) was defined as the zone between the epithelial basement membrane and the smooth muscle. The cellular infiltrate was quantified in the lamina propria of SA and LA using a fully automated image analysis system. Data were expressed as number of cells per mm².

STATISTICAL ANALYSIS
Statistical analyses were carried out using SPSS software V.13.0. Data were presented as mean (SD) or median (range), depending on whether they were normally distributed. Paired observation differences were analysed using the Wilcoxon rank test. Correlations between variables were expressed using the Spearman correlation coefficient (rs). Differences at probability values of p < 0.05 were considered to be significant.

RESULTS
Table 1 reports the characteristics of the 15 smokers included in the study.

The mean forced expiratory volume in one second, expressed as a percentage of the predicted value (FEV₁/FEV₅₅Pred), was 79.3 (15.3)% and the mean amount of cigarettes smoked was 40.0 (22.9) pack years. The ex-smokers had quit an average of 11.2 (7.9) years (mean (SD)) before the study.

In the whole group, the number of neutrophils in the lamina propria of SA (median 225.3 cells/mm² (range 42.1–874.9)) was higher than that in LA (median 60.2 cells/mm² (range 9.0–743.3); p < 0.001; figs 1 and 2).

Similar results were observed for mast cells: the median number of mast cells in the lamina propria of SA was 313.3 cells/mm² (range 112.9–507.5), whereas a median number of 133.7 cells/mm² was found in the LA (range 43.0–292.0; p < 0.001; figs 1 and 3).

In contrast, the CD4 cell content was higher in the lamina propria of LA (median 217.8 cells/mm² (range 0.0–903.4)) compared with SA (median 80.5 cells/mm² (range 6.6–452.9); p = 0.042; fig 1).

In addition to these main results, we performed a subgroup analysis by dividing the sample into current and ex-smokers, and into patients with and without COPD and non-COPD (for details, see online supplement (available online at http://jcp.bmj.com/supplemental).

DISCUSSION
Our main conclusion is that the neutrophil and mast cell density in the lamina propria of SA is higher than in the LA of smokers with or without COPD. This suggests that these cells may be involved in the development of smoking-related peripheral lung injury driven by inflammation in the SA. Interestingly, whereas the number of neutrophils and mast cells is higher in the peripheral airways, the number of CD4 cells is higher in the LA.

There are no studies in smokers describing the inflammatory cell distribution throughout the bronchial tree by direct comparison of LA and SA. However, in asthma, a higher density of CD45 cells and eosinophils has been reported in the lamina propria of LA compared with the SA. Neutrophils in the SA could play a relevant role in the pathogenesis of smoking-related diseases. A positive correlation

![Inflammatory cell counts in the lamina propria of large airways (LA) and small airways (SA) (n = 15 subjects). Horizontal lines represent median values. AA1+, mast cells; CD68, macrophages; CD3, total T lymphocytes; CD4, CD4+ T lymphocytes; CD8, CD8+ T lymphocytes; CD4/CD8, CD4/CD8 cell ratio; NE+, neutrophils.](http://www.jclinpath.com/)

Table 1
Patient characteristics (n = 15)

<table>
<thead>
<tr>
<th>Age* (years)</th>
<th>Sex (F/M)</th>
<th>FEV₁/FEV₅₅Pred*</th>
<th>FEV₁/FVC*</th>
<th>Pack years*</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.1 (10.5)</td>
<td>3/12</td>
<td>79.3 (15.3)</td>
<td>70.6 (9.3)</td>
<td>40.0 (22.9)</td>
</tr>
</tbody>
</table>

*Data are given as mean (SD)

F, female; FEV₁, forced expiratory volume in one second; FEV₁/FVC, forced expiratory volume in one second, expressed as a percentage of the predicted value; FVC, forced vital capacity; M, male.
between relative sputum neutrophil count and high-resolution computed-tomography indicators of peripheral airway dysfunction in smokers has been demonstrated. Furthermore, the number of neutrophils infiltrating the smooth muscle of SA in smokers with or without COPD is higher when compared with lifelong non-smokers. However, other studies examining the inflammatory cells infiltrating the peripheral airway wall did not show statistically significant differences in neutrophils when patients with COPD were compared with smokers with normal lung function.

In smokers, the development of COPD is accompanied by increased numbers of mast cells and macrophages in the epithelium, but not in the remainder of the airway wall of the peripheral airways. In the central airways, the analysis of bronchial biopsy specimens demonstrated a higher density of mast cells in the mucosa of asymptomatic smokers compared with never smokers. Furthermore, the number of mast cells positively correlated with the thickness of the tenascin and laminin layers, suggesting a role for these cells in tissue remodelling in smokers.

The mechanisms implicated in the non-uniform distribution through the bronchial tree of inflammatory cells are not fully understood. It is possible that a different inflammatory milieu exists in the airways, with a gradient in cytokine expression. Using an allergen-induced asthma model in rhesus monkeys, Miller et al reported increased levels of cytokines and chemokines within the distal lung, whereas CD4 lymphocytes accumulated preferentially in the proximal to midlevel region of the lungs. The authors proposed that the distal lung may be involved in the mobilisation of effector immune cells into the airways, and that proximal airways may serve as a reservoir for immune cells that contribute to chronic inflammation. Our results on smoking-related inflammation lend further support to this hypothesis.

The finding of a preferential distribution of CD4 cells in proximal airways, observed in the present study and by Miller et al., is also supported by studies in rodents. In a study performed in normal rat lungs, effector T lymphocytes accumulated preferentially in the lamina propria of the bronchi and not in the alveolar region. Similarly, human lymphocytes tended to adhere more to the bronchial endothelium than to the alveolar endothelium, according to preliminary data discussed by Ainslie et al.

It has been proposed that lymphocytes (ie, CD4 cells) may preferentially reach lung compartments supplied by bronchial vessels, whereas neutrophils and mast cells may migrate preferentially into the postcapillary venules of pulmonary vessels, and, in particular, into the capillaries of the pulmonary system.

Assessing expression of chemokines and other inflammatory mediators potentially involved in the recruitment of inflammatory cells may help in understanding the underlying mechanisms. However, results from a previous study from our group, using tissue from a patient population that was in part comparable to that in the present study, indicate that this may be complex. In that study, the epithelial IL-8 expression in SA did not correlate with numbers of neutrophils and other inflammatory cells. This finding is most likely explained by the fact that cellular influx is regulated not only by a single cytokine (such as IL-8), but probably also by a more complex mechanism involving, for example, various chemoattractants and adhesion molecules. Therefore, a study on a large range of

![Figure 2](image1.png) Neutrophils in small (A) and large (B) airways from the same patient with chronic obstructive pulmonary disease: neutrophil elastase-positive cells are in red; sections are counterstained with haematoxylin. AL, alveolar lumen; G, bronchial glands; L, airway lumen; M, smooth muscle. Arrows: example of positive cells in lamina propria. Original magnification: ×200.

![Figure 3](image2.png) Mast cells in small (A) and large (B) airways from the same patient with chronic obstructive pulmonary disease: AA1-positive cells are in red; sections are counterstained with haematoxylin. AL, alveolar lumen; L, airway lumen; M, smooth muscle. Arrows: example of positive cells in lamina propria. Original magnification: ×200.
mediators and adhesion molecules would be required. However, such an analysis was beyond the scope of the present study.

In the present study, the fully automated cell count was performed using a reproducible and previously published method developed by our group. The fact that the differences between SA and LA were not observed for all cell types studied suggests that these findings are not likely to be the result of a bias introduced by the methods used. Estimating cell numbers by stereological methods (3D, volume) could provide more accurate results, since—as opposed to 2D (area) measurements—the different sizes of cell profiles are taken into account. However, unbiased stereology requires unbiased sampling, which is difficult to achieve in studies using resected lung tissue because selection is based on, for example, diagnostic strategies for lung cancer. To date, the large majority of studies in the smokers/COPD field have used cells/area as outcome, with consistent results. The additional benefits of using stereology in inflammatory lung diseases are a subject of ongoing discussion and require further investigation.

A potential weakness of this study is that tissue from an adequate control group of lifelong non-smokers was not available for analysis. Therefore, the possibility that the specific distribution observed for neutrophils and mast cells is not exclusive to smokers cannot be excluded. Indeed, some evidence suggests that normal subjects may have higher mast cell density in membranous airways than in cartilaginous airways. Our study is limited to the analysis of the inner layer of the airway, which is also the main constituent of bronchial biopsies, and therefore comparisons between our results and those obtained using bronchial biopsies are valid. Although inflammation certainly occurs in other airway layers, Saetta et al. reported that in smokers with COPD there is a larger cell density in the “inner”, submucosal region than in the “outer”, adventitial layers, and suggested that airflow obstruction in COPD could be related to submucosal cellular density.

In conclusion, our results show a differential influx of neutrophils and mast cells in the lamina propria of SA and LA of smokers, suggesting that the concentration and/or functional activity of inflammatory stimuli that mediate cell recruitment may vary in different compartments of the lung. Therefore, increased cell recruitment in the periphery of the lung may contribute to chronic inflammation and remodelling at this level.

ACKNOWLEDGEMENTS

We are indebted to AMV, who died in December 2004.

Authors’ affiliations

Salvatore Battaglia, Thais Mauad, Annemarie M van Schadewijk, Klaus F Rabe, Peter J Sterk, Pieter S Hiemstra, Department of Pulmonology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands

Salvatore Battaglia, Antonia M Vignola*, Vincenzo Bellio, Dipartimento di Medicina, Pneumologia, Fisiologia e Nutrizione Umana (DIMPEFNU), Sapienza di Pneumologia e Medicina, Università di Palermo, Palermo, Italy

Thais Mauad, Department of Pathology, Sao Paulo University Medical School, Sao Paulo, Brazil

Funding: This study was funded by the Università di Palermo and Leiden University Medical Centre, Yaleas Italy and Italian Nitric Oxide Club.

Competing interests: SB has received unrestricted educational grants from Yaleas Italy, GlaxoSmithKline and AstraZeneca. TM has no competing interests. KFR has been consulting for participated in advisory board meetings of and received lecture fees from AstraZeneca, Boehringer, Pfizer, Novartis, ALTANA Pharma, MSD and GlaxoSmithKline. VB has participated in advisory board meetings of and received lecture fees from GlaxoSmithKline. The Department of Pulmonology (LUMC) and KFR, FSH and PJS as staff members have received grants from ALTANA Pharma, Novartis, Bayer, AstraZeneca, Pfizer, MSD, Eschale Therapeutics and GSK from 2001 to 2004. The additional benefits of using stereology in inflammatory lung diseases are a subject of ongoing discussion and require further investigation.

REFERENCES

Large and small airways inflammation in smokers

27 Mandarim-de-Lacerda CA. Stereological tools in biomedical research. An Acad Bras Cienc 2003;75:469–86.

BMJ Clinical Evidence—Call for contributors

BMJ Clinical Evidence is a continuously updated evidence-based journal available worldwide on the internet which publishes commissioned systematic reviews. BMJ Clinical Evidence needs to recruit new contributors. Contributors are healthcare professionals or epidemiologists with experience in evidence-based medicine, with the ability to write in a concise and structured way and relevant clinical expertise.

Areas for which we are currently seeking contributors:

- Secondary prevention of ischaemic cardiac events
- Acute myocardial infarction
- MRSA (treatment)
- Bacterial conjunctivitis

However, we are always looking for contributors, so do not let this list discourage you.

Being a contributor involves:

- Selecting from a validated, screened search (performed by in-house Information Specialists) valid studies for inclusion.
- Documenting your decisions about which studies to include on an inclusion and exclusion form, which we will publish.
- Writing the text to a highly structured template (about 1500–3000 words), using evidence from the final studies chosen, within 8–10 weeks of receiving the literature search.
- Working with BMJ Clinical Evidence editors to ensure that the final text meets quality and style standards.
- Updating the text every 12 months using any new, sound evidence that becomes available. The BMJ Clinical Evidence in-house team will conduct the searches for contributors; your task is to filter out high quality studies and incorporate them into the existing text.
- To expand the review to include a new question about once every 12 months. In return, contributors will see their work published in a highly-rewarded peer-reviewed international medical journal. They also receive a small honorarium for their efforts.

If you would like to become a contributor for BMJ Clinical Evidence or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to CECommissioning@bmjgroup.com.

Call for peer reviewers

BMJ Clinical Evidence also needs to recruit new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are healthcare professionals or epidemiologists with experience in evidence-based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity and accessibility of specific reviews within the journal, and their usefulness to the intended audience (international generalists and healthcare professionals, possibly with limited statistical knowledge). Reviews are usually 1500–3000 words in length and we would ask you to review between 2–5 systematic reviews per year. The peer review process takes place throughout the year, and our turnaround time for each review is 10–14 days. In return peer reviewers receive free access to BMJ Clinical Evidence for 3 months for each review.

If you are interested in becoming a peer reviewer for BMJ Clinical Evidence, please complete the peer review questionnaire at www.clinicalevidence.com/ceweb/contribute/peerreviewer.jsp

www.jclinpath.com