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Abstract.
Background: Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin. DMD is associated with specific
learning and behavioural disabilities. In the brain, dystrophin is associated with GABAA receptors and aquaporin-4 in neurons
and astrocytes, respectively, but little is known about its function.
Objective and Methods: In this study we aimed to compare the biochemical composition between patients and healthy con-
trols in brain regions that are naturally rich in dystrophin using magnetic resonance spectroscopy. Given previous conflicting
results obtained at clinical field strengths, we obtained data using a 7 Tesla system with associated higher signal-to-noise
ratio and spectral resolution.
Results: Results indicated unchanged biochemical composition in all regions investigated, and increased variance in glutamate
in the frontal cortex.
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INTRODUCTION

Duchenne muscular dystrophy (DMD) is an X-
linked recessive disease caused by loss of dystrophin
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expression due to mutations in the DMD gene. DMD
has a specific neurocognitive profile in that the mean
full-scale intelligence quotient (FSIQ) is approxi-
mately one standard deviation below the population
mean [1]. DMD patients exhibit problems with verbal
short term memory, visuospatial long term mem-
ory and verbal fluency [2]. A higher incidence of
autism spectrum disorders (ASD), attention deficit
and hyperactivity disorders (ADHD), epilepsy and
obsessive-compulsive disorders (OCD) occurs, and
specific learning disorders such as dyslexia have been
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described [3–7]. Patients with distal mutations in the
DMD gene present cognitive deficits more frequently
than patients with proximal mutations [3, 8, 9], pro-
viding a link between the absence of multiple brain
isoforms to increased risk of cognitive problems.

Dystrophin is naturally expressed in muscle cells,
endothelial cells and the central nervous system [10]
in various isoforms (i.e. Dp427, Dp260, Dp140,
Dp116, Dp71 and Dp40). In the brain, dystrophin
is believed to be expressed in the cerebral cortex,
amygdala, hippocampus and in purkinje cells of the
cerebellum [11–15]. Proximal mutations in the DMD
gene only affect Dp427 in the brain, whereas distal
mutations additionally affect Dp140 and Dp71. Lit-
tle is known about the function of dystrophin in the
brain but studies indicate that Dp427 is involved in
the organization of GABAA receptors (GABAARs)
and Dp71 in aquaporin-4 (AQP4)-containing protein
complexes in neurons and glia, respectively [10].

Using quantitative magnetic resonance imaging
(MRI) we have previously shown reduced grey mat-
ter volume, altered white matter microstructure and
reduced cerebral perfusion in DMD patients com-
pared to age-matched healthy controls [16, 17]. Both
structural and perfusion differences were measured
throughout the brain and were more pronounced in
patients with mutations predicted to affect Dp140 in
addition to Dp427 expression. Because dystrophin
is linked to GABAARs and AQP4, it is also possi-
ble that the biochemical steady-state is altered in the
absence of dystrophin. Previous magnetic resonance
spectroscopy (MRS) studies looking at biochemical
composition in the brain using clinical magnets have
presented conflicting results, namely both increased
and decreased choline, decreased glutamate and
increased NAA [18–20]. In this study, taking advan-
tage of a 7 Tesla system with higher signal-to-noise
ratio and spectral resolution, we aimed to assess the
steady-state biochemical composition of the brain
regions known to express dystrophin normally.

METHODS

Twenty boys (8–18 years of age) with a muta-
tion in the DMD gene were recruited from the Dutch
Dystrophinopathy Database [21]. Seventeen healthy
age-matched boys, without muscle or brain disor-
ders, were recruited from local schools/leisure clubs
using flyers. Exclusion criteria were the inability
to lie supine for 45 minutes, or MRI contraindi-
cations. Patients receiving corticosteroid treatment

according to a non-continuous schedule were scanned
during the off-period. Both ambulant and non-
ambulant patients were included. Written informed
consent was obtained from participants and their
parents/guardian: the study was approval by the local
medical ethical committee.

Participants were scanned on a Philips Achieva
7T using a 16- or 32-channel Nova Medical receive
head coil. A dielectric pad was placed at the lower
back of the head [22]. Scan parameters are listed in
Supplementary Table 1. A whole-brain 3D T1w-scan
was acquired for anatomical reference. A B0 map
was acquired for first- and second-order shimming.
Proton (1H) MRS used a stimulated echo acquisi-
tion mode (STEAM) sequence preceded by variable
power optimization relaxation delays (VAPOR)
water suppression [23]. Volumes-of-interest (VOIs)
were planned in the left hemisphere (Fig. 1). A non-
water-suppressed scan was acquired from the same
VOI.

Spectra were inspected by two investigators (ND
and HEK), blinded for the diagnosis. Spectra showing
clear artefacts were excluded from further analy-
sis. Quantification of the spectra was performed
using LCModel [24–29] (see supplementary meth-
ods), in which values of the Cramér-Rao lower
bound (CRLB) of metabolite concentrations <20%
were considered reliable estimates. If the CRLB of
a metabolite exceeded 20% in more than 50% of
the cases, that metabolite was excluded from further
analysis.

Student’s T-tests were used to assess differences
between DMD and control groups in age as well
as grey matter, white matter and cerebrospinal fluid
composition of the VOIs. If these differed signifi-
cantly, they were used as a covariate in the general
linear model that assessed differences in metabolite
concentrations. F-tests were used to assess differ-
ences in the variance of metabolite concentrations
between DMD and control groups. Bonferroni-
Holmes corrections for multiple comparisons were
used (p < 0.05).

RESULTS

Two participants (DMD) were excluded due to cor-
rupted datasets. For the frontal cortex, 3/35 MRS
scans (two DMD, one control) failed visual inspec-
tion or CRLB criteria. For the hippocampus, two
patients did not complete the scan and 4/33 scans
(three DMD, one control) failed quality control. For
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Table 1
Participant characteristics of the data that was included in the statistical analysis. Metabolite concentrations are shown

in mmol/l for the three VOIs with the mean and standard deviation

MRS frontal cortex MRS hippocampus MRS cerebellum
DMD Controls DMD Controls DMD Controls

Participants (n) 16 16 13 15 13 16
Age (years) 12.0 (3.1) 12.9 (2.0) 12.8 (3.1) 12.6 (2.0) 12.9 (3.2) 12.8 (2.1)
Range (years) 8–18 8–16 8–18 8–16 8–18 8–16
Steroid treatment (n) 15 – 12 – 12 –
On/off 10 day treatment regimen (n) 14 – 11 – 12 –
Brooke scale 1.9 (1.5) 1 2.1 (1.6) 1 2.4 (1.8) 1
Vignos scale 5.9 (3.2) 1 6.3 (3.0) 1 6.2 (3.2) 1
Wheelchair bound (n) 9 – 7 – 7 –
Age of loss of ambulation (years) 10.5 (1.3) – 10.6 (1.4) – 10.7 (1.3) –
Regular education (n) 9 16 9 15 8 16
N-acetyl-aspartate mmol/L ± SD 11.3 ± 1.4∗ 10.2 ± 1.2 9.7 ± 1.4 9.4 ± 1.6 13.0 ± 2.4 12.9 ± 2.7
Creatine mmol/L ± SD 8.6 ± 1.0 8.2 ± 1.0 9.8 ± 1.0 9.4 ± 1.6 8.9 ± 1.4 8.9 ± 1.5
Choline mmol/L ± SD 2.0 ± 0.2 2.0 ± 0.2 2.7 ± 0.3# 2.7 ± 0.5 2.2 ± 0.2 2.2 ± 0.4
Glutamate mmol/L ± SD 11.4 ± 2.3# 10.2 ± 1.0 10.9 ± 1.9 10.4 ± 1.8 9.6 ± 1.9 10.1 ± 2.5
Glutamate + glutamine mmol/L ± SD 11.7 ± 2.5# 11.1 ± 1.1 12.5 ± 2.0 12.2 ± 2.2 10.5 ± 2.3 11.2 ± 2.5
Myo-Inositol mmol/L ± SD 4.4 ± 0.7 4.3 ± 0.6 7.1 ± 1.1 7.7 ± 1.8 6.1 ± 1.8 6.7 ± 1.5
Aspartate mmol/L ± SD 5.6 ± 1.5 4.8 ± 1.1 5.6 ± 1.5# 6.3 ± 2.8 – –
∗p = 0.02 before correction for multiple comparisons: not significant after correcting for multiple comparisons. #F test to compare variances:
significantly different variances at p < 0.05.

the cerebellum, one control did not complete the scan
and 4/31 (three DMD, one control) failed quality con-
trol. Table 1 summarizes the MRS scans that passed
quality control.

There was no significant difference in age between
the DMD and control group. Six patients were
included who had a distal mutation in the DMD gene,
which was predicted to affect Dp140 in addition to
Dp427 expression.

Representative spectra and metabolite concentra-
tions are shown in Fig. 1, and the means and standard
deviations in Table 1. Overall, there were no dif-
ferences between DMD and control boys in any
metabolite concentrations. The variance in gluta-
mate concentration was larger in the frontal cortex
compared to healthy controls, while the variance in
choline and aspartate in the hippocampus was smaller
(Table 1). No correlations with age or grey/white mat-
ter fraction were found. Visually, Dp140- patients had
similar metabolite concentrations compared to both
other boys with DMD and controls (Fig. 1).

DISCUSSION

Our results show preserved biochemical compo-
sition of the main metabolites that can be detected
using MRS in three localized regions (cerebellum,
hippocampus and frontal cortex) of the brain in DMD
patients. These areas are known to express dystrophin
in healthy controls.

Because dystrophin is associated with GABAA,
and glutamate is required both for its synthesis and
the product of its breakdown, one hypothesis tested
in this work is that the absence of dystrophin would
lead to disrupted glutamate metabolism. Indeed,
increased glutamate has been previously reported in
the temporo-parietal cortex in DMD patients [20].
Interestingly, while the glutamate concentrations in
our groups were not significantly different on aver-
age, there was a significantly larger variance in our
DMD group compared to controls in the frontal cor-
tex. This suggests that glutamate metabolism may
be affected on an individual level in DMD. Fur-
ther research is required to determine whether this is
related to the heterogeneity in cognitive performance.

Previous MRS studies in DMD patients have
reported increased NAA and conflicting (both
increases and decreases) results for choline in dif-
ferent areas of the brain in DMD [18–20]. These
studies were conducted at lower field strengths, in
smaller cohorts and used less stringent statistics com-
pared to our study. We also find elevated (p = 0.02)
NAA in the frontal cortex of similar magnitude to the
elevated NAA that was reported by Kreis and col-
leagues in the temporo-parietal cortex [20]. However,
the NAA elevation was not statistically significant
after correcting for multiple comparisons. We found
very similar choline concentrations between patients
and controls, which is in contrast to previous find-
ings of both increased [18, 19] and decreased [20]
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Fig. 1. T1-weighted MRI images are displayed with the VOI indicated by a yellow box. From top to bottom the frontal cortex, hippocampus
and cerebellum are shown. Representative spectra are shown in the middle column. Results of the group metabolite concentrations are
depicted on the right. Patients are depicted with dots and controls with squares. The patients missing Dp140 in addition to full length
dystrophin are highlighted by purple dots.

choline. As choline is largely taken up as a result of
food consumption [30], a plausible explanation for
the contrasting findings may be differences in diet
between the studies.

In mdx mice, an animal model commonly used to
study DMD, increased choline was also found, as well
as decreased GABA and altered amino-acid concen-
trations [31–33]. Similar to our results, there were
no significant differences in any of the other metabo-
lites and no differences were found in the cerebellum.
The increased GABA was found in the hippocam-

pus in absence of significant differences in glutamate.
Unfortunately, both GABA and the amino-acids were
beyond the detection limit of our study, so no com-
parison can be made.

With respect to the role of Dp140, the groups are
too small to establish statistical significance. Within
our study, the metabolite concentration values of boys
missing Dp140 consistently lie in the same range as
for the other boys with DMD which is in line with the
earlier study where no effect of Dp140 was found on
the metabolite concentrations [20].
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To conclude, we have shown preserved bio-
chemical composition, with a statistically significant
increased variance in glutamate concentration in boys
with DMD compared to healthy controls. These
measurements were performed at steady-state and
it is possible that metabolism is normal at rest, but
changes with challenges that require higher cognitive
functioning. To this end, we propose the use of func-
tional MRI or MRS to better assess brain metabolism
in response to a challenge. Additionally, the increased
variance in glutamate requires further attention as
this may be related to the association of Dp427 to
GABAARs.
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